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Recall

Last lecture we discussed structured products and PE.
o Mortgages;
o Securitization;
o Collateralized Debt Obligations;
o

Credit Enhancement;

©

Private Equity; and,
Other Structured Products.

Today we will talk about active portfolio management.

©
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Active Portfolio Management

Chapter 24, A Quantitative Primer on Investments with R
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Introduction

o Today we will discuss active portfolio management.
o In particular, we will discuss:
o Bottom-Up: Treynor-Black Approach;
Bayesian Statistics;
Top-Down: Black-Litterman Approach;
Nonparametric: Almgren-Chriss Approach;
Risk Parity Portfolios;
Practical Issues; and,
Valuing Active Management.

© 06 © 06 0 o
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Why Active Management?

o Markowitz-Roy Modern Portfolio Theory (MPT) has a flaw:
o Jensen’s Inequality! Suggests we can beat MPT:

max E(U(w|X)) > max U(w|E(X), Var(X)). (1)
stochastic optimization modern po:trfolio theory

Example: if X ~ N(0,1), [E(X)]? =0 < E(X?) =1.
Brinson et al suggest we focus on asset allocation.

Grinold-Kahn: hold market + asset allocation/active management.

© © © o

Some suggest smart beta: hold market, add risk factors.?

©

Stochastic optimization is hard; many approximations proposed.

©

Popular: Treynor-Black, Black-Litterman, Almgren-Chriss, risk parity.
Q

36
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The Treynor-Black Model

o If MPT, single index model are OK: just accommodate alpha.
o That gives us the (bottom-up) Treynor-Black (1973) model.
@ Decompose portfolio into market M, active A pieces:

ri = rf+aA+,6’A(RM—|—eM)+e; r,-J_rj,RM‘v’i,j. (2)
@ Put weights wy;, wa = 1 — wy on market, active pieces.
. . . A 0‘/‘/‘75
@ Instrument i active weight w/ = ST foT
j=1 %/ 9¢;

@ Active A, market-neutral alpha A* portfolio metrics:

n

n n
Qar = ap = Z wia;, Ba= Z wiBi, o4 = Z(W,-A)zafl_. (3)

i=1 i=1 i=1

@ Regroup M, A into total market M*, market-neutral alpha A*.

M* = wy M + waBaA Af = WAA(]. — BA) (4)
——
market exposure
gf Ap 036
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Treynor-Black: Weights, Metrics

. « . . Qpx /Uf‘*
o Portfolio A* weight wy+ = ERu) /o2 (L= Bn)an o0
o Other weights: wy« = 1 — wa+, and WI-A* = wy+ W,-A.
o Risky portfolio metrics: Bp = wpy« + waxSa,
E(Rp) = BpE(RM) + wa-aa, and a%, = ﬁ%aﬁ, + WE\*UE\*.
2
o Alpha portfolio information ratio: IRa« = /> 7 ; ;12" .
: . _ 2 2
o Portfolio Sharpe ratio: Sp = /S5, + IR5.
o Thus alpha increases our returns, often at lower risk.

Q.’>6
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nor-Black: Issues

The Treynor-Black model can have some problems:

o Active and market portfolios might be large.

o Can and do we want to hold, say, +bA — 4M?
o Can generate high ap, but also high op.
o Effect: leveraged bet on alpha vs market; are we so certain of alpha?
Mean-variance optimization . .. is extremely sensitive to
... assumptions the investor must provide.
— Black and Litterman (1992).
o Can add penalties on wg, wy; try shrinking alphas.
Maximize Sp — Kk max(wa, way, O)2 — ks min(wa, WM,O)2 (5)
where k[, ks are capital usage penalties.
o Can also try squeezing alphas. Q¢
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Bayesian Statistics

o We keep hitting problems due to input uncertainty.
o Worse: We are not even certain how uncertain we are.
o Also, we have no way to merge in beliefs or biases.

o One solution: Bayesian statistics.

o Uses a prior distribution to express a priori beliefs.

o Mix prior with data likelihood to get posterior distribution.
o Loose (“flat”/“weak") priors let data control posterior.

o Tighter priors let preconceived beliefs affect posterior.

Q.’>6
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Bayesian Statistics: Example

An example: What is P(coin flip = heads)?

Recall: n flips, P(head) = p, # heads k ~Binomial(n, p).
o Conjugate prior (make math easier) for Binomial is Beta.

Flat prior: Beta(a, 8 = 1) = unif(0,1).

Flip coin 50 times, get 20 heads. Unusual?

Posterior: Beta(k + 1,n — k + 1) = Beta(21, 31).

o Posterior E(k) = 395 = 2 =0.404.

o Posterior sd(k) = \/(a+5)2?g+5+1) = \/522123513 = 0.07.
95% credible interval: 0.5 € [0.276,0.539]. Seems fair.
Strong prior of fair coin: Beta(aw = 3 > 1).

©

©

©

(]

©

©

©
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The Black-Litterman Model

Treynor-Black hints at difficulty: we want good inputs.
Black and Litterman (1992): top-down, Bayesian approach.

Allows merging historical data, equilibrium model, views;

© © © o

Can accommodate non-normality of returns, other risk measures;

©

Use macro, cyclical factors for return forecasts; and,

©

Use higher-frequency data to forecast covariance matrix.

©

Bayesian approach squeezes parameters toward mean; sensible.

©

Bayesian approach also enables easy stochastic optimization.

Q36
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Black-Litterman Process

o The Black-Litterman model can be broken into 5 steps:

@ Estimate covariance matrix £ with recent data.

@ Determine baseline (prior) forecast and precision.

@ Express views quantitatively.

@ Add views to get revised (posterior) forecast and precision.
® Optimize portfolio using the posterior distribution.

o Typically done with normal dist'n + mean, variance.
o Also usually stocks and bonds; ignore commodities, RE, FX.

o Fatter-tailed dist'ns + coherent risk could be used.

Q36
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Black-Litterman: Covariance, Baseline (Prior)

1. Estimate X: can use recent, frequent data; factor models.
o Yields 3 for asset classes: (0,02) on diagonal, ¥gs off diagonal.
2. Assume market is in equilibrium (efficient) to start.

o Outstanding bond, stock amounts = weights: w’ = (wg, ws).

Prior portfolio variance: 02, = w’ Lw = wjo3 + w202 + 2wgwsZgs.

©

Mean risk aversion X — 3 = asset class risk premia.

In equilibirium, risk premia = forecast: E(R) = AL w.

Get forecast covariance Var(R) = % /n; n = # obs. to estimate ¥.
Thus our baseline prior: RP" ~ N(XLw,3 /n).

© 06 0 o
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Black-Litterman: Expressing Views

3. Next, express quantified views @ for picks P.
o e.g. Bonds will outperform stocks by 1%; bond excess returns=3%:

001] [1 -1][Rs
{0.03] - {1 0} [/%5]' (6)
—— —
E(Q) P R

The shakiest part: guess view uncertainty Var(Q) = Q.

Concern: inept/dishonest/overconfident analyst can bias portfolio.
Forecast model/empirical Bayes might give better Q.

This give us our “data” (views) likelihood: PR ~ N(Q, Q).

© 06 0 o
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Black-Litterman: Finding the Posterior, Optimizing

4. Use priors, views to get posterior forecast distribution.
o E(RP) is precision-weighted mean of baseline, view:

Reost o N (£90% [n£ 71N w + PTQ Q) £70%) (7)
$post [ni—l + PTQ_IP} o (8)

o For posterior of returns, add forecast and return variance:
RPOSt o (iwst [ni—1Xiw + PTQ‘IQ} g ip°st) . (9)

5. Then optimize portfolio to find new wPt = (wh", wl>").

o Could do Markowitz-Roy, but why? Suboptimal; wastes hard work.
o Could also use non-normal distributions, coherent risk.
o Have distributions; do stochastic optimization! Simulate/quadrature.

Q36
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Almgren-Chriss Approach

So far, approaches have entailed distributional assumptions.

©

©

Instead, use distribution-agnostic nonparametric statistics.

o Use rank statistics p = (p1, - - ., pk) wh/order returns r = (r, ..., rg).

o e ri>r = pi>pVi#]

o Consider set of all rank-equivalent returns Q, = {r" : p(r') = p(r)}.
Suppose we compare two portfolios A and B w/weights w”, w5.
Weakly prefer portfolio A vs B (A = B or w” > wB) if:
whp(r') > wBp(r') vr' € Q..

o Can then impose budget constraints: Z, W,-A =1, W,A > 0, etc.
Efficient portfolio is P: P = P’; P, P’ meet all constraints.

©

©

©

©

Can find P by using centroids of returns.

Q36
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Risk Parity Portfolios

o Budget, industry/sector, risk constraints are common.

o Risk parity: each instrument/asset contributes equal risk.

o Like a risk-weighted analog of 1/n equal-weight portfolio.

o Has been successfully used at PanAgora, Bridgewater.

o For volatility, risk parity vol between min-variance and 1/n portfolio.
o Thus risk parity portfolio is like shrinkage of 1/n portfolio.

o Is this a good idea? Maybe low-risk instruments return more?
o Asness, Frazzini, and Pedersen (2014): low-beta stocks outperform.
o Pearson; Boudt+Carl+Peterson: outperforms for coherent risk.
o Outperformance seems to be about risk, not risk measure.

o Problem: over- (under-) weight if risk under- (over-)estimated.

o Like problem with cap weighting; could squeeze risk measures.

036
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Practical Issues

o A few issues we should also consider/try to fix.
o Estimated vol: need Jensen's Inequality correction.
o Bond portfolios: less liquid, hard to index. Buys often:
o substitute similar higher-yield bond;
o earn sector/country intermarket spread,
o anticipate future interest rates; or,
o pickup yield of illiquidity premium.
o Sell OOM options to collect premium, rebalance portfolio.
o Bayesian adjustment to alphas? (Details follow)
o Model realized alphas on predicted alphas.

Q36
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Adjusting Alphas

Can use a Bayesian approach to squeeze alphas.
Prior: aa ~ N(0,02,) using historical o2, = 0.02; empirical Bayes!
Suppose forecast yields E(ap) = O.Ol,Var(aA) = 0.001.

Combine prior and forecast (data) to get posterior:

© © o o

0 0.01
o, + g.001 1

1 71 1

= N(0.0095,0.00095).  (10)
ﬁ + 0.001 E + 0.001

apg~ N

©

Result is weighted average; squeezes forecast toward prior.
o Weight by 1/ Var(forecast); lower variance = more weight.

©

Could later combine results from another analysis.

Q36
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Performance Evaluation

o If we actively managed a portfolio, we might ask:

o How successful was that management?
o How did individual strategies/decisions perform?
o Could management have been better?

o Measuring performance is hard; easy to game.

o Gaming-resistant metrics may be used for external managers.
o Other measures may only be useful for assessing internal managers.3

o Key to performance evaluation is disentangling:

o Risk: Did we take risk and just get lucky?
o Noise: How much performance is unpredictable (] 07)?
o Skill: What performance seems reproducible?

Q

36
3This assumes we would not lie to ourselves by gaming metrics.
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Looking at Rates of Return

o Actual investors need to consider dollar-weighted averages.

o Especially proper since capital invested may change.
o DCF-based measure: internal rate of return, IRR =

PV(cashflows in) PV/(cashflows out)
. i 2 o1 02 }
: R 2 W
{r IR e e e (e (11)

o Can also scale historical returns for risk taken (as in § 8.4):

Sharpe ratio: Sp = %_adjusts for volatility.

Sortino ratio: Sop = “Z* adjusts for semideviation (better).

Cond'l Sharpe: CS5p = ”’ " adjusts for expected shortfall (coherent).
o Treynor ratio: Tp = ’PBP” adjusts for systematic-relative risk (sort of).

[*]

[*]

©

o Returns should always include transactions costs.
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Benchmark-Relative Performance Metrics

o More sensible is to compare performance to benchmark M.
o Modigliani-Modigliani: scale volatility to op w/risk-free F.

op op

M2 = rp. — ry, where P* = IMp <1 - UM) F. (12)

o Can look at tracking error vs benchmark we track T:
o Often, people say “tracking error” but mean target risk sd(Rg).

RE = RP — RT or Sd(RE) = Sd(RP - RT) (13)

o Better: Factor exposure is cheap to attain; don't pay fees on that.
o Jensen's alpha: ap = 7p — (7 + Bp(fm — r)) CAPM-adjusted.
o Connor-Korajczak: look at ap from a multi-factor model.
o Info ratio: IRp = :—P for ap from factor model; like idiosyncratic Sp.

o IRp in 0.4-0.6 rangéP is very good; above 1 is rare for long. o
36
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Summary on Performance Metrics

Tp good for portfolio additions to LARGE diversified portfolios.*

©

©

Sp popular but not great; CAPM is insufficient alpha model.

o M? very good for comparing strategies of varying risk.

©

IRp good for judging active management.
o Note: Sp, IRp are like t-stats; yet values > 2 are rare.

©

Never good: R?. Can drive R?> 1 1: add garbage to model.

o In general, statistical analysis of manager alpha is tough.

Q36
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Metrics for Alternative Investments

Qo

How to evaluate alternatives: Hedge funds, CTAs, PE/VC?

Use Hasanhodzic-Lo (6-factor), Fung-Hsieh (7-/8-factor) models?
o Problem: many of these factors are expensive to trade

Can also consider simple Jurek and Stafford (2015):

o Uses Bondarenko (2014) observation that puts are expensive.
o Puts are insurance; so, consider a put-writing factor.

©

(]

Ri = aj + BimRm + Bi.pw PW + €. (14)

o May also include lags of factors.
Then filter for funds with good/robust «, IR.

Many caveats with returns and metrics for alternatives:

o Funds may report CAPM « and IRs but not clarify that.
o Observability, Peso problems, survivorship, reporting bias.

©

(]
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Market Timing

How to detect market timing ability?
Add nonlinear term to model (Treynor-Mazuy, Henrikksson-Merton):
o Significant 4 > 0 indicates timing ability.

©

(]

Re = a+ Bp(rm — re) +4(rm — re)* +¢,  (T-M) (15)
Rp :a+ﬁp(rM— r,c)—{—'y(rM— rf)++e. (H—M) (16)

Another hint: semideviation 8p much less than volatility op.
What is value of market timing?

o Similar to a call (or call and put) option.
o i.e. Get only upside performance — but pay for that.

©

©
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Evidence from Investment Professionals

o Based on the data, do some investors seem to have skill?
o Analysts ratings are not informative; changes are.

o Analysts who forecast alpha add some value (M? = 2.1%)
o Mutual funds are more varied in performance:

o Small group of funds+bond funds are consistently bad.

o Most funds are just plays on momentum, have a < 0.

o No evidence of market timing ability either.

o Could be some skilled managers + return-chasing investors.
o Hedge funds and mutual funds managed side-by-side:

o Those MFs have alpha, not taken advantage of by HF; however,
o HF managers who add a MF: MF has typical performance; and,
o MF managers who add a HF: HF has subpar performance.

036
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Time-Varying Portfolio Metrics

o If returns, risk vary across time, metrics may change.
o Changing means and variances add to risk.

o Like adding between-group variation to within-group variation.

P Sp = o2 (17)
Py 9= g (18)
Famsa : 5P = ((0.;2106.21)5/22)/2 - 8;2 = % (19)
o Successful market timers would adjust positions.
o Get better performance when market goes up and down.
Q.’>6
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Manipulation of Measures

o Ingersoll et al (2007): Measures can be manipulated.

o Static: write OOM options, put premium in risk-free bonds;

o Dynamic: add leverage after extremes to mess w/stationarity;

o Dynamic: add measurement error by smoothing, illiquid holdings.
o They propose four properties of manipulation-proof measure:

@ Functionhood: yields one score/investment;

@ Scale invariance: same score for any notional;

@ Unbiasedness: only informed investor can improve score (via arb);

@ Economic consistency: Must agree w/market equilibrium.

o Thus their (certainty-equivalent) manipulation-proof measure 6:

ot (S]]

where p is the relative risk aversion (usu. near 3). Q
36
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What Fee is Fair?

What is a fair fee for good active management?

©

Kane, Marcus, and Trippi use Treynor-Black perspective:

©

S-Sk _IRY YO, IR?

%fee = fone-time = Z = 21
0 one-time o\ o\ N\ ( )
o If Sp=1, Sy =108, and A = 3, fonetime = 22 = 6%.
o Berk: Manager consumes all expected alpha.
o Glode: Manager may charge more than alpha!
o Why? If alpha is supplied in hard times, that has more value.
Q.’>6
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What Fee is Fair? Mean-Variance Fee

What is a fair fee for good active management?

©

o What if we consider fee vs mean-variance utility?

o Investor pays fee f = utility of receiving a — f with volatility 6,:

A

f:a—f—E&i. (22)
o Implies manager claims annual fee as fraction of «:

a*nnual — 1 _ Ao (23)

« 2 4/Rf\
o Foster and Young: No manipulation-proof fee structure.
o However, we should consider risk, risk aversion.
Q.’>6
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Performance Attribution

o Evaluating management performance is tough:

o Need many observations of portfolio returns; and,
o Parameters (1, o) change constantly over time.
o However, some decompositions are informative.
o Break performance into meaningful pieces®.
o Measure baseline performance with benchmark B
o Benchmark allocation {wp, }K_, among K asset classes.
o Benchmark asset class weights, returns become counterfactuals.

o Benchmark B, portfolio P performance given by:
K K
rg = Z WB, B, rp = Z wp, rp,. (24)
k=1 k=1

Q
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Performance Attribution: Decomposition

o Brinson-Hood-Beebower: decompose benchmark-excess returns.

o ldea: benchmark asset-class weights, returns = counterfactuals

K
rp—rg= Z(karpk — wp, erJ—i- Wp, g, — WB, !B, )- (25)
k=1 e
security /sector asset class
selection selection

o Further: Use sector i sub-portfolios Py ;, By ; for asset class k.

o Decompose asset class k sector/security selection rp, — rg, :

sector selection instrument selection
S S
WPk,s WBk,s WBk,s
rPk_erZE : - rPks+§ : (rPks_ers)'
wp wg , wg , ;
s=1 k k s=1 k

f)
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The Road Ahead

We covered active portfolio management; on to investment firms next!

o All Together Now: Investment Firms, Crises.
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