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Recall

Last lecture we discussed structured products and PE.

Mortgages;

Securitization;

Collateralized Debt Obligations;

Credit Enhancement;

Private Equity; and,

Other Structured Products.

Today we will talk about active portfolio management.
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Active Portfolio Management

Chapter 24, A Quantitative Primer on Investments with R
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Introduction

Today we will discuss active portfolio management.

In particular, we will discuss:

Bottom-Up: Treynor-Black Approach;
Bayesian Statistics;
Top-Down: Black-Litterman Approach;
Nonparametric: Almgren-Chriss Approach;
Risk Parity Portfolios;
Practical Issues; and,
Valuing Active Management.
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Why Active Management?

Markowitz-Roy Modern Portfolio Theory (MPT) has a flaw:

Jensen’s Inequality! Suggests we can beat MPT:

max
w

E (U(w |X ))︸ ︷︷ ︸
stochastic optimization

≥ max
w

U(w |E (X ),Var(X ))︸ ︷︷ ︸
modern portfolio theory

. (1)

Example: if X ∼ N(0, 1), [E (X )]2 = 0 < E (X 2) = 1.

Brinson et al suggest we focus on asset allocation.

Grinold-Kahn: hold market + asset allocation/active management.

Some suggest smart beta: hold market, add risk factors.2

Stochastic optimization is hard; many approximations proposed.

Popular: Treynor-Black, Black-Litterman, Almgren-Chriss, risk parity.

2“Smart beta” is often undefined: buy-and-hold factors? factor timing?
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The Treynor-Black Model

If MPT, single index model are OK: just accommodate alpha.

That gives us the (bottom-up) Treynor-Black (1973) model:
1 Decompose portfolio into market M, active A pieces:

ri = rf + αA + βA(RM + εM) + εi ri ⊥ rj ,RM∀i , j . (2)

2 Put weights wM , wA = 1− wM on market, active pieces.

3 Instrument i active weight wA
i =

αi/σ
2
εi∑n

j=1 αj/σ2
εj

.

4 Active A, market-neutral alpha A∗ portfolio metrics:

αA∗ = αA =
n∑

i=1

wA
i αi , βA =

n∑
i=1

wA
i βi , σ2

A∗ =
n∑

i=1

(wA
i )2σ2

εi . (3)

5 Regroup M, A into total market M∗, market-neutral alpha A∗.

M∗ = wMM + wAβAA︸ ︷︷ ︸
market exposure

of A

, A∗ = wAA(1− βA). (4)
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Treynor-Black: Weights, Metrics

Portfolio A∗ weight wA∗ =
αA∗/σ

2
A∗

E(RM)/σ2
M+(1−βA)αA∗/σ

2
A∗

.

Other weights: wM∗ = 1− wA∗ , and wA∗
i = wA∗wA

i .

Risky portfolio metrics: βP = wM∗ + wA∗βA,
E (RP) = βPE (RM) + wA∗αA, and σ2

P = β2
Pσ

2
M + w2

A∗σ2
A∗ .

Alpha portfolio information ratio: IRA∗ =

√∑n
i=1

α2
i

σ2
εi

.

Portfolio Sharpe ratio: SP =
√
S2
M + IR2

A.

Thus alpha increases our returns, often at lower risk.
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Treynor-Black: Issues

The Treynor-Black model can have some problems:

Active and market portfolios might be large.

Can and do we want to hold, say, +5A− 4M?

Can generate high αP , but also high σP .

Effect: leveraged bet on alpha vs market; are we so certain of alpha?

Mean-variance optimization . . . is extremely sensitive to
. . . assumptions the investor must provide.
— Black and Litterman (1992).

Can add penalties on wA,wM ; try shrinking alphas.

Maximize SP − κL max(wA,wM , 0)2 − κS min(wA,wM , 0)2 (5)

where κL, κS are capital usage penalties.

Can also try squeezing alphas.

Dale W.R. Rosenthal Quantitative Investments 1Jun2018 8 / 33



Q36 

Bayesian Statistics

We keep hitting problems due to input uncertainty.

Worse: We are not even certain how uncertain we are.
Also, we have no way to merge in beliefs or biases.

One solution: Bayesian statistics.

Uses a prior distribution to express a priori beliefs.
Mix prior with data likelihood to get posterior distribution.
Loose (“flat”/“weak”) priors let data control posterior.
Tighter priors let preconceived beliefs affect posterior.
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Bayesian Statistics: Example

An example: What is P(coin flip = heads)?

Recall: n flips, P(head) = p, # heads k ∼Binomial(n, p).

Conjugate prior (make math easier) for Binomial is Beta.

Flat prior: Beta(α, β = 1) = unif(0,1).

Flip coin 50 times, get 20 heads. Unusual?

Posterior: Beta(k + 1, n − k + 1) = Beta(21, 31).

Posterior E (k) = α
α+β = 21

52 = 0.404.

Posterior sd(k) =
√

αβ
(α+β)2(α+β+1) =

√
21·31
522·53 = 0.07.

95% credible interval: 0.5 ∈ [0.276, 0.539]. Seems fair.

Strong prior of fair coin: Beta(α = β > 1).
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The Black-Litterman Model

Treynor-Black hints at difficulty: we want good inputs.

Black and Litterman (1992): top-down, Bayesian approach.

Allows merging historical data, equilibrium model, views;

Can accommodate non-normality of returns, other risk measures;

Use macro, cyclical factors for return forecasts; and,

Use higher-frequency data to forecast covariance matrix.

Bayesian approach squeezes parameters toward mean; sensible.

Bayesian approach also enables easy stochastic optimization.
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Black-Litterman Process

The Black-Litterman model can be broken into 5 steps:
1 Estimate covariance matrix Σ with recent data.
2 Determine baseline (prior) forecast and precision.
3 Express views quantitatively.
4 Add views to get revised (posterior) forecast and precision.
5 Optimize portfolio using the posterior distribution.

Typically done with normal dist’n + mean, variance.

Also usually stocks and bonds; ignore commodities, RE, FX.

Fatter-tailed dist’ns + coherent risk could be used.
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Black-Litterman: Covariance, Baseline (Prior)

1. Estimate Σ: can use recent, frequent data; factor models.

Yields Σ̂ for asset classes: (σ2
B , σ

2
S) on diagonal, ΣBS off diagonal.

2. Assume market is in equilibrium (efficient) to start.

Outstanding bond, stock amounts =⇒ weights: wT = (wB ,wS).
Prior portfolio variance: σ2

M = wTΣw = w2
Bσ

2
B + w2

Sσ
2
S + 2wBwSΣBS .

Mean risk aversion λ̄
?
= 3 =⇒ asset class risk premia.

In equilibirium, risk premia = forecast: E (R) = λ̄Σ̂w .
Get forecast covariance Var(R̂) = Σ̂/n; n = # obs. to estimate Σ.
Thus our baseline prior: R̂prior ∼ N(λ̄Σ̂w , Σ̂/n).
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Black-Litterman: Expressing Views

3. Next, express quantified views Q for picks P.

e.g. Bonds will outperform stocks by 1%; bond excess returns=3%:[
0.01
0.03

]
︸ ︷︷ ︸
E(Q)

=

[
1 −1
1 0

]
︸ ︷︷ ︸

P

[
R̂B

R̂S

]
︸ ︷︷ ︸

R̂

. (6)

The shakiest part: guess view uncertainty Var(Q) = Ω.
Concern: inept/dishonest/overconfident analyst can bias portfolio.
Forecast model/empirical Bayes might give better Ω.
This give us our “data” (views) likelihood: PR̂ ∼ N(Q,Ω).
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Black-Litterman: Finding the Posterior, Optimizing

4. Use priors, views to get posterior forecast distribution.

E (R̂post) is precision-weighted mean of baseline, view:

R̂post ∼ N
(

Σ̂post
[
nΣ̂−1λ̄Σ̂w + PTΩ−1Q

]
, Σ̂post

)
(7)

Σ̂post =
[
nΣ̂−1 + PTΩ−1P

]−1

. (8)

For posterior of returns, add forecast and return variance:

Rpost ∼ N
(

Σ̂post
[
nΣ̂−1λ̄Σ̂w + PTΩ−1Q

]
, Σ̂ + Σ̂post

)
. (9)

5. Then optimize portfolio to find new wpost = (wpost
B ,wpost

S ).

Could do Markowitz-Roy, but why? Suboptimal; wastes hard work.
Could also use non-normal distributions, coherent risk.
Have distributions; do stochastic optimization! Simulate/quadrature.
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Almgren-Chriss Approach

So far, approaches have entailed distributional assumptions.

Instead, use distribution-agnostic nonparametric statistics.

Use rank statistics ρ = (ρ1, . . . , ρk) wh/order returns r = (r1, . . . , rk).
i.e. ri ≥ rj ⇐⇒ ρi ≥ ρj ∀i 6= j .
Consider set of all rank-equivalent returns Qr = {r ′ : ρ(r ′) = ρ(r)}.

Suppose we compare two portfolios A and B w/weights wA,wB .

Weakly prefer portfolio A vs B (A � B or wA � wB) if:
wAρ(r ′) ≥ wBρ(r ′) ∀r ′ ∈ Qr .

Can then impose budget constraints:
∑

i w
A
i = 1,wA

i ≥ 0, etc.

Efficient portfolio is P: P � P ′; P,P ′ meet all constraints.

Can find P by using centroids of returns.
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Risk Parity Portfolios

Budget, industry/sector, risk constraints are common.

Risk parity: each instrument/asset contributes equal risk.

Like a risk-weighted analog of 1/n equal-weight portfolio.

Has been successfully used at PanAgora, Bridgewater.

For volatility, risk parity vol between min-variance and 1/n portfolio.

Thus risk parity portfolio is like shrinkage of 1/n portfolio.

Is this a good idea? Maybe low-risk instruments return more?

Asness, Frazzini, and Pedersen (2014): low-beta stocks outperform.
Pearson; Boudt+Carl+Peterson: outperforms for coherent risk.
Outperformance seems to be about risk, not risk measure.

Problem: over- (under-) weight if risk under- (over-)estimated.

Like problem with cap weighting; could squeeze risk measures.
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Practical Issues

A few issues we should also consider/try to fix.

Estimated vol: need Jensen’s Inequality correction.

Bond portfolios: less liquid, hard to index. Buys often:

substitute similar higher-yield bond;
earn sector/country intermarket spread;
anticipate future interest rates; or,
pickup yield of illiquidity premium.

Sell OOM options to collect premium, rebalance portfolio.

Bayesian adjustment to alphas? (Details follow)

Model realized alphas on predicted alphas.
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Adjusting Alphas

Can use a Bayesian approach to squeeze alphas.

Prior: αA ∼ N(0, σ2
εA

) using historical σ2
εA

= 0.02; empirical Bayes!

Suppose forecast yields E (αA) = 0.01,Var(αA) = 0.001.

Combine prior and forecast (data) to get posterior:

αA ∼ N

 0
σ2
εA

+ 0.01
0.001

1
σ2
εA

+ 1
0.001

,
1

1
σ2
εA

+ 1
0.001

 = N(0.0095, 0.00095). (10)

Result is weighted average; squeezes forecast toward prior.

Weight by 1/Var(forecast); lower variance = more weight.

Could later combine results from another analysis.
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Performance Evaluation

If we actively managed a portfolio, we might ask:

How successful was that management?
How did individual strategies/decisions perform?
Could management have been better?

Measuring performance is hard; easy to game.

Gaming-resistant metrics may be used for external managers.
Other measures may only be useful for assessing internal managers.3

Key to performance evaluation is disentangling:

Risk: Did we take risk and just get lucky?
Noise: How much performance is unpredictable (↓ 0?)?
Skill: What performance seems reproducible?

3This assumes we would not lie to ourselves by gaming metrics.
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Looking at Rates of Return

Actual investors need to consider dollar-weighted averages.

Especially proper since capital invested may change.
DCF-based measure: internal rate of return, IRR :=

{
r :

PV(cashflows in)︷ ︸︸ ︷
i0 +

i1
1 + r

+
i2

(1 + r)2
+ · · · =

PV(cashflows out)︷ ︸︸ ︷
o1

1 + r
+

o2

(1 + r)2
+ · · ·

}
. (11)

Can also scale historical returns for risk taken (as in § 8.4):

Sharpe ratio: SP = r̄P−r̄f
σP

adjusts for volatility.

Sortino ratio: SoP = r̄P−r̄f
θP

adjusts for semideviation (better).

Cond’l Sharpe: CSP = r̄P−r̄f
ESP

adjusts for expected shortfall (coherent).

Treynor ratio: TP = r̄P−r̄f
βP

adjusts for systematic-relative risk (sort of).

Returns should always include transactions costs.
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Benchmark-Relative Performance Metrics

More sensible is to compare performance to benchmark M.

Modigliani-Modigliani: scale volatility to σM w/risk-free F .

M2
P = rP∗ − rM , where P∗ =

σM
σP

P +

(
1− σM

σP

)
F . (12)

Can look at tracking error vs benchmark we track T :

Often, people say “tracking error” but mean target risk sd(RE ).

RE = RP − RT or sd(RE ) = sd(RP − RT ). (13)

Better: Factor exposure is cheap to attain; don’t pay fees on that.

Jensen’s alpha: αP = r̄P − (r̄f + βP(r̄M − r̄f )) CAPM-adjusted.
Connor-Korajczak: look at αP from a multi-factor model.
Info ratio: IRP = αP

σεP
for αP from factor model; like idiosyncratic SP .

IRP in 0.4–0.6 range is very good; above 1 is rare for long.
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Summary on Performance Metrics

TP good for portfolio additions to LARGE diversified portfolios.4

SP popular but not great; CAPM is insufficient alpha model.

M2 very good for comparing strategies of varying risk.

IRP good for judging active management.

Note: SP , IRP are like t-stats; yet values > 2 are rare.

Never good: R2. Can drive R2 ↑ 1: add garbage to model.

In general, statistical analysis of manager alpha is tough.

4For large portfolios, idiosyncratic variance is small.
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Metrics for Alternative Investments

How to evaluate alternatives: Hedge funds, CTAs, PE/VC?

Use Hasanhodzic-Lo (6-factor), Fung-Hsieh (7-/8-factor) models?

Problem: many of these factors are expensive to trade

Can also consider simple Jurek and Stafford (2015):

Uses Bondarenko (2014) observation that puts are expensive.
Puts are insurance; so, consider a put-writing factor.

Ri = αi + βiMRM + βi,PWPW + εi . (14)

May also include lags of factors.

Then filter for funds with good/robust α, IR.

Many caveats with returns and metrics for alternatives:

Funds may report CAPM α and IRs but not clarify that.
Observability, Peso problems, survivorship, reporting bias.

Dale W.R. Rosenthal Quantitative Investments 1Jun2018 24 / 33



Q36 

Market Timing

How to detect market timing ability?

Add nonlinear term to model (Treynor-Mazuy, Henrikksson-Merton):

Significant γ̂ > 0 indicates timing ability.

RP = α + βP(rM − rf ) + γ(rM − rf )2 + ε, (T-M) (15)

RP = α + βP(rM − rf ) + γ(rM − rf )+ + ε. (H-M) (16)

Another hint: semideviation θP much less than volatility σP .

What is value of market timing?

Similar to a call (or call and put) option.
i.e. Get only upside performance — but pay for that.
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Evidence from Investment Professionals

Based on the data, do some investors seem to have skill?

Analysts ratings are not informative; changes are.

Analysts who forecast alpha add some value (M2 = 2.1%)

Mutual funds are more varied in performance:

Small group of funds+bond funds are consistently bad.
Most funds are just plays on momentum, have α < 0.
No evidence of market timing ability either.
Could be some skilled managers + return-chasing investors.

Hedge funds and mutual funds managed side-by-side:

Those MFs have alpha, not taken advantage of by HF; however,
HF managers who add a MF: MF has typical performance; and,
MF managers who add a HF: HF has subpar performance.
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Time-Varying Portfolio Metrics

If returns, risk vary across time, metrics may change.

Changing means and variances add to risk.

Like adding between-group variation to within-group variation.

Pt0→t1 : SP =
0.2

0.3
; (17)

Pt1→t2 : SP =
0.1

0.15
; (18)

Pt0→t2 : SP =
(0.1 + 0.2)/2√
(0.32 + 0.152)/2

=
0.15

0.24
<

2

3
. (19)

Successful market timers would adjust positions.

Get better performance when market goes up and down.
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Manipulation of Measures

Ingersoll et al (2007): Measures can be manipulated.

Static: write OOM options, put premium in risk-free bonds;
Dynamic: add leverage after extremes to mess w/stationarity;
Dynamic: add measurement error by smoothing, illiquid holdings.

They propose four properties of manipulation-proof measure:
1 Functionhood: yields one score/investment;
2 Scale invariance: same score for any notional;
3 Unbiasedness: only informed investor can improve score (via arb);
4 Economic consistency: Must agree w/market equilibrium.

Thus their (certainty-equivalent) manipulation-proof measure Θ̂:

Θ̂ =
1

(1− ρ)∆t
log

(
1

T

T∑
i=1

[
1 + rt

1 + rf ,t

]1−ρ
)
, (20)

where ρ is the relative risk aversion (usu. near 3).
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What Fee is Fair?

What is a fair fee for good active management?

Kane, Marcus, and Trippi use Treynor-Black perspective:

%fee = fone-time =
S2
P − S2

M

2λ̄
=

IR2
A

2λ̄
=

∑n
i=1 IR

2
i

2λ̄
. (21)

If SP = 1, SM = 0.8, and λ̄ = 3, fone-time = 0.36
6 = 6%.

Berk: Manager consumes all expected alpha.

Glode: Manager may charge more than alpha!

Why? If alpha is supplied in hard times, that has more value.
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What Fee is Fair? Mean-Variance Fee

What is a fair fee for good active management?

What if we consider fee vs mean-variance utility?

Investor pays fee f = utility of receiving α− f with volatility σ̂α:

f = α− f − λ̄

2
σ̂2
α. (22)

Implies manager claims annual fee as fraction of α:

f ∗annual

α
=

1

2
− λ̄α

4IR2
A

(23)

Foster and Young: No manipulation-proof fee structure.

However, we should consider risk, risk aversion.
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Performance Attribution

Evaluating management performance is tough:

Need many observations of portfolio returns; and,
Parameters (µ, σ) change constantly over time.

However, some decompositions are informative.

Break performance into meaningful pieces5.

Measure baseline performance with benchmark B

Benchmark allocation {wBk
}Kk=1 among K asset classes.

Benchmark asset class weights, returns become counterfactuals.

Benchmark B, portfolio P performance given by:

rB =
K∑

k=1

wBk
rBk

rP =
K∑

k=1

wPk
rPk
. (24)

5For example: What we do versus don’t control.
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Performance Attribution: Decomposition

Brinson-Hood-Beebower: decompose benchmark-excess returns.

Idea: benchmark asset-class weights, returns = counterfactuals

rP − rB =
K∑

k=1

(wPk
rPk
− wPk

rBk︸ ︷︷ ︸
security/sector

selection

+wPk
rBk
− wBk

rBk︸ ︷︷ ︸
asset class
selection

). (25)

Further: Use sector i sub-portfolios Pk,i ,Bk,i for asset class k.

Decompose asset class k sector/security selection rPk
− rBk

:

rPk
− rBk

=

sector selection︷ ︸︸ ︷
S∑

s=1

(
wPk,s

wPk

−
wBk,s

wBk

)
rPk,s

+

instrument selection︷ ︸︸ ︷
S∑

s=1

wBk,s

wBk

(rPk,s
− rBk,s

) .

(26)

Dale W.R. Rosenthal Quantitative Investments 1Jun2018 32 / 33



Q36 

The Road Ahead

We covered active portfolio management; on to investment firms next!

All Together Now: Investment Firms, Crises.
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